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SUMMARY

In this paper, the Fourier expansion-based differential quadrature (FDQ) and the polynomial-based
differential quadrature (PDQ) methods are applied to simulate the natural convection in a concentric
annulus with a horizontal axis. The comparison and grid independence of PDQ and FDQ results are
studied in detail. It was found that both PDQ and FDQ can obtain accurate numerical solutions using
just a few grid points and requiring very small computational resources. It was demonstrated in the paper
that the FDQ method can be applied to a periodic problem or a non-periodic problem. When FDQ is
applied to a non-periodic problem (half of annulus), it can achieve the same order of accuracy as the
PDQ method. And when FDQ is applied to the periodic problem (whole annulus), it is very efficient for
low Rayleigh numbers. However, its efficiency is greatly reduced for the high Rayleigh numbers. The
benchmark solution for Ra=102, 103, 3×103, 6×103, 104, 5×104 are also presented in the paper.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Natural convective heat transfer in enclosed spaces has been extensively studied due to its wide
applications in engineering, such as in nuclear reactor design, cooling of electronic equipment,
aircraft cabin insulation and thermal storage systems. The horizontal concentric annulus is a
most commonly used geometry for these applications. The research on natural convection in
a concentric annulus includes the numerical work and the experimental investigation. Among
the numerical work [1–16], the low order methods, such as finite difference, finite volume and
finite element methods, are usually used to make spatial discretization. In general, the low
order methods need a large number of grid points to obtain accurate numerical results and
thus require a lot of computational effort and virtual storage.

In seeking an efficient method using just a few grid points to obtain accurate numerical
results, Bellman et al. [17] introduced a global method of differential quadrature (DQ). DQ
approximates a derivative with respect to a co-ordinate direction at a grid point by a weighted
linear sum of all the functional values in that direction. Obviously, the key to DQ is to
determine the weighting coefficients for any order derivative discretization. Bellman et al. [17]
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suggested two ways to determine the weighting coefficients of the first-order derivative. The first
way solves an algebraic equation system. The second uses a simple algebraic formulation, but
with a condition that the co-ordinates of grid points should be chosen as the roots of the shifted
Legendre polynomial. The early applications of DQ [17–20] usually used Bellman’s first way
to obtain the weighting coefficients because the co-ordinates of grid points can be chosen
arbitrarily. But unfortunately, when the order of the system, i.e. the number of grid points, is
large, the matrix of the system is ill-conditioned. Thus, it is very difficult to obtain the weighting
coefficients using this way when the number of grid points is large. To overcome the drawbacks
of DQ, Shu [21] generalized all the ways of computing the weighting coefficients under analysis
of a linear vector space when the function is approximated by a high-order polynomial. As a
result, the weighting coefficients of the first-order derivative are determined by a simple algebraic
formulation without any restriction on choice of grid points, and the weighting coefficients of
the second- and higher-order derivatives are determined by a recurrence relationship. This is a
major breakthrough in the development and application of the DQ method. Since then, the DQ
method has been extensively applied to solve the fluid flow problems [21–26] and the structural
and vibration problems [27–42]. More recently, Shu et al. [43] further presented the explicit
formulations to compute the weighting coefficients when the function is approximated by Fourier
series expansion. For simplicity of the following discussion, the polynomial-based DQ method
is noted as PDQ, while the Fourier expansion-based DQ approach is termed FDQ. It is indicated
that the developed FDQ method can be applied to a periodic problem or a non-periodic problem.
When a periodic problem is applied, the periodic condition is naturally considered in the FDQ
formulation. Thus, no periodic condition is needed to implement in the solution process. It was
shown by Shu et al. [43] that when a non-periodic boundary value problem is considered, the
accuracy of both PDQ and FDQ results is almost the same. However, when a periodic problem
is considered, the FDQ method provides much more accurate results than the PDQ method.
To further study the performance of PDQ and FDO methods to periodic and non-periodic
problems, the natural convection in a concentric annulus is investigated in this work. The polar
system is used to solve the governing equations. In the r-direction, the flow is always a
non-periodic boundary value problem, and the PDQ method will be used to discretize the
derivatives, since for this case both PDQ and FDQ give almost the same result. The FDQ method
is applied in the u-direction since it can automatically treat the periodic condition. On the other
hand, for the natural convection in the annulus between two concentric cylinders, the flow can
be assumed to be symmetric with respect to the vertical centerlines. Thus, half of the annulus
can be taken as the computational domain. Then for this case, the flow in the u-direction becomes
a non-periodic boundary value problem, and both PDQ and FDQ approaches can be applied.
The performance of PDQ and FDQ methods will be validated by their application to discretize
the derivatives in the u-direction for three test cases.

2. DIFFERENTIAL QUADRATURE METHOD

For simplicity, the one-dimensional problem is chosen to demonstrate the differential quadrature
method. Following the idea of an integral quadrature that uses a linear weighted summation
of all the functional values to approximate an integral over a closed domain, Bellman et al. [17]
proposed the differential quadrature (DQ) method that approximates the derivative of a smooth
function at a grid point by a linear weighted summation of all the functional values in the whole
computational domain. For example, the first- and second-order derivatives of f(x) at a point
xi are approximated by
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fx(xi)= %
N

j=1

aij ·f(xj), for i=1, 2, . . . , N, (1)

fxx(xi)= %
N

j=1

bij ·f(xj), for i=1, 2, . . . , N, (2)

where N is the number of grid points, and aij, bij are the weighting coefficients. It is noted that
Equations (1) and (2) are similar except that they use different weighting coefficients.
Obviously, the key procedure in DQ is to determine the weighting coefficients aij and bij. It was
shown by Shu [21] and Shu et al. [43] that under the analysis of a linear vector space, all the
ways of computing the weighting coefficients can be generalized, and when the function f(x)
is approximated differently, the formulation for aij and bij is also different. In the following, the
respective formulations of aij and bij are presented when the function f(x) is approximated by
a high-order polynomial or by the Fourier series expansion.

2.1. Polynomial-based differential quadrature (PDQ)

For this case, it is supposed that the function is approximated by an (N−1)th degree
polynomial in the form

f(x)= %
N−1

k=0

ck ·xk. (3)

It is easy to show that the polynomial of degree less than or equal to N−1 constitutes an
N-dimensional linear vector space VN. From the concept of linear independence, the bases of
a linear vector space can be considered as a linearly independent subset that spans the entire
space. Here, if rk(x), k=1, 2, . . . , N, are the base polynomials in VN, f(x) can then be
expressed by

f(x)= %
N

k=1

dk ·rk(x). (4)

Clearly, if all the base polynomials satisfy a linear constrained relationship, such as Equation
(1) or (2), so does f(x). In the linear vector space, there may exist several sets of base
polynomials. Each set of base polynomials can be expressed uniquely by another set of base
polynomials. In computing the weighting coefficients, Shu [21] used two sets of base polynomi-
als. The first set of base polynomials is chosen as the Lagrange interpolated polynomials

rk(x)=
M(x)

(x−xk) ·M (1)(xk)
, (5)

where

M(x)= (x−x1) ·(x−x2) · · · (x−xN),

M (1)(xk)= 5
N

j=1, j"k

(xk−xj),

x1, x2, . . . , xN are the co-ordinates of grid points, and can be chosen arbitrarily.
Setting

M(x)=N(x, xk) ·(x−xk), k=1, 2, . . . , N, (6)

with N(xi, xj)=M (1)(xi) ·dij, where dij is the Kronecker operator, we then obtain

M (m)(x)=N (m)(x, xk) ·(x−xk)+m ·N (m−1)(x, xk), (7)
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for

m=1, 2, . . . , N−1; k=1, 2, . . . , N,

where M (m)(x), N (m)(x, xk) are the mth-order derivative of M(x) and N(x, xk).
Substituting Equation (5) into Equations (1) and (2), we obtain

aij=
N (1)(xi, xj)

M (1)(xj)
, (8)

bij=
N (2)(xi, xj)

M (1)(xj)
. (9)

Using Equation (7), Equations (8) and (9) can be further reduced to

aij=
M (1)(xi)

(xi−xj) ·M (1)(xj)
, when j"1, (10a)

aii=
M (2)(xi)

2M (1)(xi)
, (10b)

bij=2aij ·
�

aii−
1

xi−xj

�
, when j" i, (11a)

bii=
M (3)(xi)

3M (1)(xi)
. (11b)

Clearly, aij, bij (i" j ) can be easily computed from Equations (10a) and (11a). However, the
computation of aii (Equation (10b)) and bii (Equation (11b)) involves the computation of
M (2)(xi) and M (3)(xi), which are not easy to compute. As will be shown in the following, this
difficulty can be removed by the property of the linear vector space. According to the theory
of a linear vector space, one set of base polynomials can be expressed uniquely by another set
of base polynomials. Thus, if one set of base polynomials satisfies a linear constrained
relationship, so does another set of base polynomials. Thus, Equations (1) and (2) should also
be satisfied by the second set of base polynomials xk, k=0, 1, 2, . . . , N−1. When k=0, this
set of base polynomials gives

%
N

j=1

aij=0, (12)

%
N

j=1

bij=0. (13)

From the above equations, aii and bii can be easily determined from aij and bij (i" j ). It is
indicated that a recurrence relationship can also be derived to compute the weighting
coefficients of higher-order derivatives. For details, see [21].

2.2. Fourier expansion-based differential quadrature (FDQ)

For this case, the function is approximated by a Fourier series expansion in the form

f(x)=c0+ %
N/2

k=1

(ck cos kx+dk sin kx). (14)

Similar to PDQ, it is easy to show that f(x) in Equation (14) constitutes an (N+1)-dimen-
sional linear vector space with respect to the operation of addition and multiplication. If rk(x),
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k=0, 1, . . . , N, are the base functions, any function in the space can be expressed as a linear
combination of rk(x), k=0, 1, . . . , N. It is obviously observed from Equation (14) that one set
of base functions is 1, sin x, cos x, sin 2x, . . . , sin(Nx/2), cos(Nx/2). Similar to the PDQ ap-
proach, two sets of base functions will be used in the FDQ approach. Firstly, the Lagrange
interpolated trigonometric polynomials are taken as one set of base functions:

rk(x)=
sin

x−x0

2
· · · sin

x−xk−1

2
·sin

x−xk+1

2
· · · sin

x−xN

2

sin
xk−x0

2
· · · sin

xk−xk−1

2
·sin

xk−xk+1

2
· · · sin

xk−xN

2

, (15)

for k=0, 1, 2, . . . , N.
Setting

M(x)= 5
N

k=0

sin
x−xk

2
=N(x, xk) ·sin

x−xk

2
, (16)

where

N(xi, xi)= 5
N

k=0, k" i

sin
xi−xk

2
=P(xi), N(xi, xj)=N(xi, xi) ·dij, (17)

where dij is the Kronecker operator, Equation (15) can then be reduced to

rk(x)=
N(x, xk)

P(xk)
. (18)

Using the same fashion as in PDQ, we let all the base functions given by Equation (18)
satisfy two linear constrained relations (1) and (2). This results in the following two
formulations

aij=
N (1)(xi, xj)

P(xj)
, (19)

bij=
N (2)(xi, xj)

P(xj)
. (20)

It is observed from Equations (19) and (20) that the computation of aij and bij is equivalent to
the evaluation of N (1)(xi, xj) and N (2)(xi, xj), since P(xj) can be easily calculated by Equation
(17). To evaluate N (1)(xi, xj) and N (2)(xi, xj), Equation (16) is successively differentiated to
obtain

M (1)(x)=N (1)(x, xk) ·sin
x−xk

2
+

1
2

N(x, xk) ·cos
x−xk

2
, (21)

M (2)(x)=N (2)(x, xk) ·sin
x−xk

2
+N (1)(x, xk) ·cos

x−xk

2
−

1
4

N(x, xk) ·sin
x−xk

2
, (22)

M (3)(x)=N (3)(x, xk) ·sin
x−xk

2
+

3
2

N (2)(x, xk) ·cos
x−xk

2
−

3
8

N (1)(x, xk) ·sin
x−xk

2

−
1
8

N(x, xk) ·cos
x−xk

2
. (23)

From the above equations, we can obtain the following results
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N (1)(xi, xj)=
P(xi)

2 sin
xi−xj

2

, when j" i, (24)

N (1)(xi, xi)=M (2)(xi), (25)

N (2)(xi, xj)=
M (2)(xi)−N (1)(xi, xij) ·cos

xi−xj

2

sin
xi−xj

2

, when j" i, (26)

N (2)(xi, xi)=
2
3
�

M (3)(xi)+
1
8

N(xi, xi)
n

. (27)

Substituting Equations (24) and (25) into Equation (19), we obtain

aij=
1
2

·
P(xi)

sin
xi−xj

2
·P(xj)

, when j" i, (28)

aii=
M (2)(xi)

P(xi)
. (29)

Similarly, substituting Equations (26) and (27) into Equation (20) and using Equations (28)
and (29), we obtain

bij=aij
�

2aii−cotan
xi−xj

2
n

, when j" i, (30)

bii=
2
3
�M (3)(xi)

P(xi)
+

1
8
n

. (31)

From Equations (28) and (30), aij, bij (i" j ) can be easily computed. However, the calculation
of aii (Equation (29)) and bii (Equation (31)) involves the computation of M (2)(xi) and M (3)(xi),
which are not easy to compute. This difficulty can be removed using the same manner as used
in PDQ. The following two equations can be obtained by substituting the second set of base
functions 1, sin x, cos x, sin 2x, . . . , sin(Nx/2), cos(Nx/2) into Equations (1) and (2):

%
N

j=1

aij=0, (32)

%
N

j=1

bij=0. (33)

From Equations (32) and (33), aii and bii can be easily calculated from aij (i" j ) and bij (i" j ).
It should be indicated that Equations (28), (30), (32) and (33) can be applied to the periodic
problems and the non-periodic problems. For the non-periodic problems, the x range in the
computational domain is 05x5p, while for the periodic problems, the x range in the
computational domain is 05x52p.

3. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATION

The governing equations for the natural convection in the annulus between horizontal
concentric cylinders can be written as [1]:
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(U
(R

+
U
R

+
1
R
(V
(u

=0, (34)

r
(U
(t( +r

�
U
(U
(R

+
V
R
(U
(u

−
V2

R
n

= −
(P
(R

+m
�(2U
(R2+

1
R
(U
(R

+
1

R2

(2U
(u2 −

U
R2−

2
R2

(V
(u

n
+FR,

(35)

r
(V
(t( +r

�
U
(V
(R

+
V
R
(V
(u

−
UV
R
n

= −
1
R
(P
(u

+m
�(2V
(R2+

1
R
(V
(R

+
1

R2

(2V
(u2 −

V
R2+

2
R2

(U
(u

n
+Fu, (36)

r
(T
(t( +rc

�
U
(T
(R

+
V
R
(T
(u

n
=k

�(2T
(R2+

1
R
(T
(R

+
1

R2

(2T
(u2

n
, (37)

where the co-ordinate R is measured from the center of the system, and u is measured
clockwise from the upward vertical line. The radial velocity U is positive radially outwards, the
angular velocity V is positive in the clockwise direction. FR and Fu are the body force
components in the radial and angular directions respectively, which can be written as functions
of the temperature difference:

FR=grb(T−To) cos u, (38a)

Fu=grb(T−To) sin u, (38b)

where g is the gravitational acceleration, T the temperature at a point within the fluid, To the
temperature of the outer cylinder and b the thermal volumetric expansion coefficient. For the
two-dimensional problem, the use of vorticity–streamfunction formulation can simplify the
solution procedure. With the streamfunction, the velocity components U and V can be
expressed as

U=
1
R
(C
(u

, V= −
(C
(R

.

Furthermore, by setting

c=
C
a

, r=
R
L

, f=
T−To

Ti−To

, u=
UL
a

, 6=
VL
a

, t=
t( a
L2 ,

where a=k/rc is the thermal diffusivity, L is the gap between the cylinders and Ti is the
temperature of the inner cylinder, Equations (34)–(37) can be simplified as

92c= −v, (39)

1
Pr
(v

(t
+

1
Pr

�
u
(v

(r
+
6

r
(v

(u

n
=92v−Ra

�
sin u

(f

(r
+

1
r

cos u
(f

(u

n
, (40)

(f

(t
+u
(f

(r
+
6

r
(f

(u
=92f, (41)

where

92=
(2

(r2+
1
r
(

(r
+

1
r2

(2

(u2

is a Laplacian operator.
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The dimensionless parameters appearing in the Equations (39)–(41) are the Prandtl number
Pr=mc/k and the Rayleigh number Ra=rgbL3(Ti−To)/ma.

For the natural convection in an annulus between two concentric cylinders, the flow is
symmetric with respect to the vertical centerline. Thus, half of the annulus can be taken as the
computational domain. This can be the case when the PDQ or FDQ method with a
non-periodic condition is applied in the u-direction. However, when the FDQ method with a
periodic condition is used in the u-direction, the whole annulus should be chosen as the
computational domain. The boundary conditions on two impermeable isothermal walls are
given by

c=u=6=0, v= −
(2c

(r2 , f=1, (42)

on the inner cylinder and

c=u=6=0, v= −
(2c

(r2 , f=0 (43)

on the outer cylinder. When half of the annulus is taken as the computational domain, the
following symmetric condition is applied along two vertical lines of symmetry at u=0 and
u=p :

c=6=v=
(u
(u

=
(f

(u
=0. (44)

When the whole annulus is taken as the computational domain, the periodic condition is
required in the u-direction, which can be naturally implemented by the FDQ method.

In the present study, the spatial derivatives in the r-direction are discretized by the PDQ
method, while in the u-direction the derivatives will be discretized by either the PDQ or the
FDQ method. After spatial discretization by PDQ or FDQ, Equations (39)–(41) can be
reduced to

%
N

k=1

bi,k

r j
2 ·ck, j+ %

M

k=1

�āj,k

rj

+b( j,k
�

·ci,k= −vi, j, (45)

1
Pr

dvi, j

dt
+

1
Pr

�
ui, j %

M

k=1

āj,k ·vi,k+
6i, j

rj

%
N

k=1

ai,k ·vk, j

n
= %

N

k=1

bi,k

r j
2 ·vk, j+ %

M

k=1

�āj,k

rj

+b( j,k
�

·vi,k−Ra
�

sin ui %
M

k=1

āj,k ·fi,k+
cos ui

rj

%
N

k=1

ai,k ·fk, j

n
,

(46)

dfi, j

dt
+ui, j %

M

k=1

āj,k ·fi,k+
6i, j

rj

%
N

k=1

ai,k ·fj,k= %
N

k=1

bi,k

r j
2 ·fk, j+ %

M

k=1

�āj,k

rj

+b( j,k
�

·fi,k, (47)

where i=1, 2, . . . , N ; j=1, 2, . . . , M ; ai,k, bi,k are the weighting coefficients of the first- and
second-order derivatives in the u-direction; āi,k, b( i,k are the weighting coefficients of the first-
and second-order derivatives in the r-direction. When the PDQ method is applied, the
weighting coefficients are computed from Equations (10a), (11a), (12) and (13), while for the
application of the FDQ method, the weighting coefficients are calculated from Equations (28),
(30), (32) and (33). Similar to the discretization of governing equations, the derivatives in the
boundary conditions can also be discretized by the PDQ or FDQ method.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 977–993 (1999)



SIMULATION OF NATURAL CONVECTION BY DQM 985

4. RESULTS AND DISCUSSION

As mentioned above, the PDQ method is used to discretize derivatives in the r-direction. The
performance and comparison of PDQ and FDQ methods are studied by their application in
the u-direction. Since the computational domain can be either taken as half of the annulus or
the whole annulus, three cases for this study will follow

Case 1:
Half of the annulus is considered as the computational domain and the PDQ method is applied
in the u-direction;

Case 2:
Half of the annulus is taken as the computational domain and the FDQ method is applied in
the u-direction;

Case 3:
The whole annulus is considered as the computational domain and the FDQ method is applied
in the u-direction.

For the convenience of the following discussion, the results of case 1 are noted as PDQ, the
results of case 2 are termed as FDQNP, and the results of case 3 are represented by FDQP.
In the r-direction, the co-ordinates of grid points are chosen as

rj=
1

RR−1
+

1−cos
� j−1

M−1
·p
�

2
, j=1, 2, . . . , M, (48)

where RR=Ro/Ri is the ratio of radius, Ri, Ro are the inner and outer cylinder radii
respectively.

In the u-direction, the co-ordinates of grid points are chosen as

ui=
p

2
�

1−cos
� i−1

N−1
·p
�n

, i=1, 2, . . . , N (49)

for cases 1 and 2, and

ui=2p
i−1

N
, i=1, 2, . . . , N (50)

for case 3.
It is noted that for cases 1 and 2, the symmetric boundary condition (44) should be

implemented at u=0 and u=p. However, for case 3, since the periodic condition is naturally
considered in the FDQ formulation, no boundary condition is needed to implement in the
u-direction.

In the present work, the Euler implicit scheme is applied to discretize the time derivative in
the vorticity and temperature equations, and the resultant algebraic equations are solved by
the SOR method. The computed values of average equivalent conductivities are used to
compare the PDQ, FDQNP and FDQP results, and to study the convergence (grid indepen-
dence) of numerical results. The average equivalent conductivity is defined as

k( eq=
− ln(RR)

2p

7 (f
(n

·ds. (51)
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C. SHU986

Table I. Convergence of computed average equivalent conductivities for Ra=102

Inner cylinder, k( eqi
Outer cylinder, k( eqo

Mesh size (u×r)

PDQ FDQNP FDQP PDQ FDQNP FDQP

0.993 0.985 0.9943×5 0.993 0.985 0.994
1.000 0.991 1.001 1.0003×7 0.991 1.002
1.000 0.992 1.0013×8 1.000 0.992 1.001
1.0003×9 0.992 1.001 1.000 0.992 1.001
1.001 1.001 1.001 1.0015×8 1.001 1.001

1.000Kuehn and Glodstein [1] 1.002

The above equation can be further reduced to

k( eqi
=

− ln(RR)
2p(RR−1)

& 2p

0

(f

(r
·du (52a)

for the inner cylinder, and

k( eqo
= −

RR · ln(RR)
2p(RR−1)

& 2p

0

(f

(r
·du (52b)

for the outer cylinder. For all the computations, Pr and L/Di are set as 0.7 and 0.8
respectively, and the converged solutions are obtained when the maximum absolute value of
residuals of vorticity, temperature and streamfunction equations are less than 10−3.

The average equivalent conductivities computed by PDQ, FDQNP and FDQP methods for
Ra=102, 103, 3×103, 6×103, 104, 5×104 are listed in Tables I, II, III, IV, V and VI. Also
included in these tables are the results of Kuehn and Goldstein [1] obtained from the
second-order finite difference scheme. The PDQ, FDQNP and FDQP results are obtained by
using different mesh sizes. It can be observed from the tables that for all the cases, the
convergence of PDQ, FDQNP and FDQP results is very good. For the given Rayleigh
number, when the mesh size is above a certain grid, the numerical solution is independent of
mesh size, and the computed average equivalent conductivities for the inner and outer
cylinders are the same. This confirms the theoretical analysis. Since there is no energy loss in
the whole system, the theoretical average equivalent conductivities for the inner and outer
cylinders should be the same. From this computation, it is believed that the accurate values of

Table II. Convergence of computed average equivalent conductivities for Ra=103

Mesh size (u×r) Inner cylinder, k( eqi
Outer cylinder, k( eqo

PDQ FDQNP FDQP PDQ FDQNP FDQP

3×9 1.000 O.992 1.068 0.9921.000 1.068
1.086 1.082 1.084 1.086 1.0821.0835×9

7×9 1.0821.0821.0821.0821.0821.081
1.082 1.082 1.0821.0821.0821.0828×9

1.086 1.082 1.085 1.0865×11 1.0821.084
1.082 1.084 1.081 1.088 1.089 1.0855×8

1.0841.081Kuehn and Glodstein [1]
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Table III. Convergence of computed average equivalent conductivities for Ra=3×103

Mesh size (u×r) Inner cylinder, keqi
Outer cylinder, k( eqo

PDQ FDQNP FDQP PDQ FDQNP FDQP

1.431 1.488 1.404 1.4365×13 1.488 1.404
1.396 1.396 1.396 1.3969×13 1.397 1.396
1.397 1.397 1.39713×13 1.397 1.397 1.397
1.397 1.397 1.397 1.39715×13 1.397 1.397
1.397 1.397 1.39713×15 1.397 1.397 1.397

13×11 1.397 1.397 1.397 1.396 1.396 1.396

1.404 1.402Kuehn and Glodstein [1]

average equivalent conductivity are 1.001, 1.082, 1.397, 1.715, 1.979 and 2.958 for Ra=102,
103, 3×103, 6×103, 104, 5×104 respectively. And these values can be considered as the
benchmark solutions for the respective Rayleigh numbers that are summarized in Table VII.

Since the PDQ method is applied in the r-direction for all the cases, the minimum number
of mesh points required in the r-direction for a grid-independent solution is the same for PDQ,
FDQNP and FDQP results. It can be seen from Tables I, II, III, IV, V and VI that the
minimum number of mesh points required for a grid-independent solution in the r-direction is
8, 9, 13, 15, 15 and 21 respectively for Ra=102, 103, 3×103, 6×103, 104, 5×104. In the
u-direction, three approaches are used. Thus, the minimum number of mesh points required in
the u-direction for a grid-independent solution is different for PDQ, FDQNP and FDQP
results. For the convenience of the following discussion, the minimum number of mesh points
for a grid-independent solution in the u-direction is noted as ‘the minimum number of mesh
points’. It was found that the FDQP method is very efficient for low Rayleigh numbers. It can
be seen from Table I that when Ra=102, PDQ and FDQNP require five mesh points in the
range of 05u5180°, while FDQP needs only three mesh points in the range of 05u5360°
to obtain a grid-independent solution. Table II shows that when Ra=103, the minimum
number of mesh points is increased to 8, 7 and 5 respectively for PDQ, FDQNP and FDQP
results. When Ra=3×103, the minimum number of mesh points is the same for PDQ,
FDQNP and FDQP results, and is increased to 13. This can be observed in Table III. Table
IV demonstrates that when Ra=6×103, the minimum number of mesh points for FDQP
results is larger than that for PDQ results. For this case, the minimum number of mesh points

Table IV. Convergence of computed average equivalent conductivities for Ra=6×103

Inner cylinder, k( eqi
Mesh size (u×r) Outer cylinder, k( eqo

PDQ FDQNP FDQP PDQ FDQNP FDQP

1.71211×15 1.716 1.716 1.712 1.720 1.717
1.715 1.716 1.7161.7161.715 1.71615×15

1.7151.715 1.7151.7151.7151.71517×15
1.7151.7151.715 1.71519×15 1.715 1.715

17×17 1.715 1.715 1.7151.715 1.715 1.715
1.715 1.71517×13 1.716 1.716 1.716 1.715

1.7351.736Kuehn and Glodstein [1]
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Table V. Convergence of computed average equivalent conductivities for Ra=104

Inner cylinder, k( eqi
Outer cylinder, k( eqo

Mesh size (u×r)

PDQ FDQNP FDQP PDQ FDQNP FDQP

1.980 1.980 1.98415×15 1.979 1.980 1.983
1.979 1.980 1.981 1.97917×15 1.979 1.981
1.979 1.979 1.98019×15 1.979 1.979 1.980
1.979 1.979 1.980 1.979 1.97919×17 1.980
1.979 1.979 1.97927×15 1.979 1.979 1.979

19×13 1.981 1.981 1.981 1.979 1.979 1.979

2.010 2.005Kuehn and Glodstein [1]

is 15, 17 and 17 respectively for PDQ, FDQNP and FDQP results. When the Rayleigh number
is high, the efficiency of FDQP method is greatly reduced. This can be noticed in Tables V and
VI. Table V shows that when Ra=104, PDQ and FDQNP methods need 17 and 19 mesh
points, while FDQP method requires 27 mesh points to get a grid-independent solution. From
Table VI, it can be seen that when Ra is further increased to 5×104, the minimum number of
mesh points is increased to 29, 29 and 49 respectively for PDQ, FDQNP and FDQP results.
Clearly, the minimum number of mesh points for FDQP results is increased much faster than
for PDQ and FDQNP results. However, if we consider the number of mesh points used in the
half of annulus, we can find that the number of mesh points used for FDQP results is still less
than that for PDQ and FDQNP results. Although in the above discussion, the minimum
number of mesh points is studied for a grid-independent solution, the reasonable numerical
results can be obtained by using much smaller mesh sizes. This can be observed in Tables I,
II, III, IV, V and VI. Since accurate PDQ, FDQNP and FDQP results are obtained by very
small mesh sizes, the required computational time is tiny, especially for the low Rayleigh
number flows. Table VIII lists the iteration numbers and the computation time (s) required on
LEONIS for a grid-independent solution of Ra=102, 103, 3×103, 6×103, 104, 5×104. It can
be seen from Table VIII that when Ra53×103, all three methods require less than 1 s
computation time to get a grid-independent solution. As the Rayleigh number increases, the
required computation time also increases. For all the cases studied, the required computation
time for a grid-independent solution is less than 2 min. It can also be observed from Table VIII
that the FDQP method usually needs less iterations than the PDQ and FDQNP methods to

Table VI. Convergence of computed average equivalent conductivities for Ra=5×104

Inner cylinder, k( eqi
Mesh size (u×r) Outer cylinder, k( eqo

PDQ FDQNP FDQP PDQ FDQNP FDQP

2.99419×21 2.958 2.958 2.994 2.960 2.956
2.957 2.957 2.9862.9862.958 2.95825×21

2.9652.958 2.9582.9652.9582.95829×21
2.9632.9582.958 2.95831×21 2.958 2.963

49×21 2.958 2.958 2.9582.958 2.958 2.958
2.956 2 96629×19 2.958 2.958 2.965 2.956

2.9733.024Kuehn and Glodstein [1]
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Table VII. Benchmark solution of average equivalent conductivities

Equivalent Ra
conductivities

102 103 3×103 6×103 104 5×104

1.001 1.082Inner cylinder k( eqi
1.397 1.715 1.979 2.958

1.001 1.082 1.397 1.715Outer cylinder k( eqo
1.979 2.958

get a converged solution. However, it requires more operation time per iteration than other
two methods. Among PDQ and FDQNP methods, PDQ requires less operation time per
iteration. It was found that for all the cases, the flow patterns obtained from PDQ, FDQNP
and FDQP methods are the same. Figure 1 shows the streamlines and the isotherms of FDQP
results for Ra=5×104. The separation of inner and outer cylinder thermal boundary layer
and the symmetry of flow pattern can be seen clearly.

5. CONCLUSIONS

The polynomial-based differential quadrature (PDQ) and the Fourier expansion-based differ-
ential quadrature (FDQ) are applied in this study to simulate the natural convection in an
annulus between two concentric cylinders. It was found that the FDQ method can be applied
to a periodic or a non-periodic problem. When FDQ is applied in the half of annulus
(non-periodic problem), it can achieve the same order of accuracy as the PDQ method. And
when FDQ is applied in the whole annulus (periodic problem), it is very efficient for low

Table VIII. Iterations and computation time required for a grid-independent
solution

Methods Mesh sizes Iterations Run time (s)Ra

102 PDQ 5×8 103 0.09
0.10FDQNP 1095×8

85 0.073×8FDOP

8×9 172 0.15103 PDQ
FDQNP 7×9 162 0.16
FDOP 5×9 126 0.11

3×103 PDQ 13×13 427 0.75
411 0.8313×13FDQNP

FDOP 349 0.8113×13

15×15 529 1.45PDQ6×103

17×15 629 2.16FDQNP
FDOP 17×15 395 1.55

PDQ 17×15104 544 1.71
2.4256619×15FDQNP

FDQP 27×15 552 4.51

5×104 PDQ 29×21 3596 41.68
40.61350229×21FDQNP
96.12333149×21FDQP
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Figure 1. Streamlines and isotherms of FDQP for Ra=5×104.

Rayleigh number flows. However, its efficiency is greatly reduced for the high Rayleigh
number flows. For this case, it is suggested to take half of the annulus as the computational
domain in order to save computational effort. For all the cases, PDQ and FDQ can obtain
accurate numerical results by using a considerably small number of grid points and requiring
tiny computation time. The benchmark solutions for Ra=102, 103, 3×103, 6×103, 104,
5×104 are also presented in the paper.

APPENDIX A. NOMENCLATURE

aij, bij weighting coefficients of the first- and second-order derivatives in u-direction
weighting coefficients of the first- and second-order derivatives in r-directionāij, b( ij

c specific heat at constant pressure
Di diameter of inner cylinder
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fx, fxx first- and second-order derivatives of f with respect to x
acceleration due to gravityg
thermal conductivityk
average equivalent conductivityk( eq

k( eqi
average equivalent conductivity of inner cylinder

k( eqo
average equivalent conductivity of outer cylinder
gap of annulus, L=Ro−RiL
number of mesh points in r-directionM
number of mesh points in u-directionN

P pressure
Pr Prandtl number

Rayleigh numberRa
radius of inner cylinderRi

radius of outer cylinderRo

RR radius ratio, RR=Ro/Ri

R radial co-ordinate
dimensionless radial co-ordinater
temperatureT
temperatures of inner and outer cylindersTi, To

U, V velocity components in R-, u-directions
u, 6 dimensionless velocity components in r-, u-directions

Greek letters

thermal diffusivitya

b thermal expansion coefficient
f dimensionless temperature,

angular co-ordinateu

viscositym

kinematic viscosityn

r density
vorticityv

dimensionless streamfunctionc
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